

XIII Werkshep Nazierale

TERAPIE INNOVATIVE DELLE EPATITI CRONICHE VIRALI E DELLE INFEZIONI VIRALI



Centro Congressi Hotel Londra

PROGRAMMA

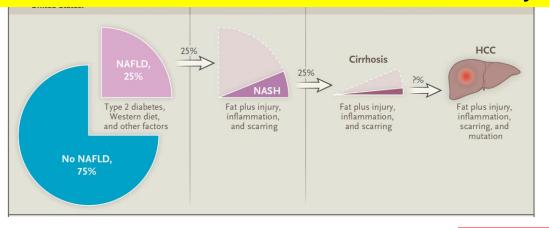


# Il paziente con NAFLD: inquadramento e ruolo del CAP

# Fabio Marra

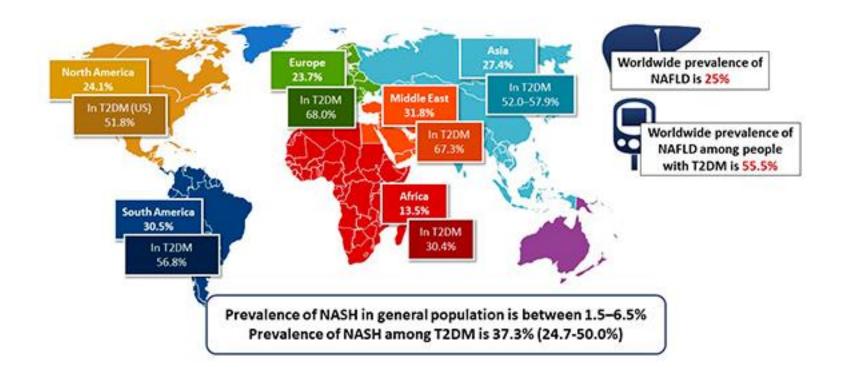

Dipartimento di Medicina Sperimentale e Clinica Università di Firenze fabio.marra@unifi.it

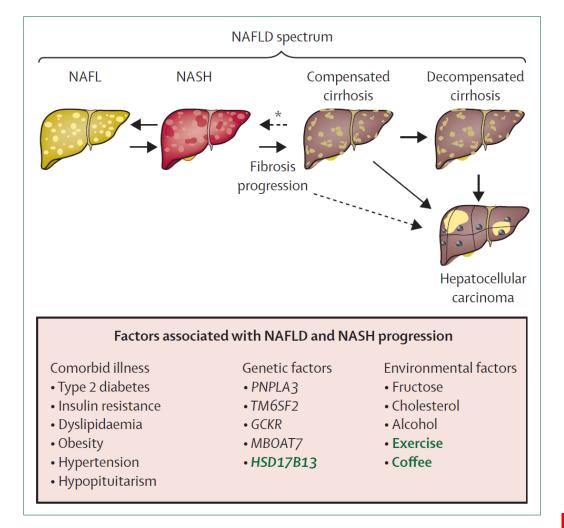
# **Disclosures**


- **Abbvie**: consultant fees, travel grants
- Allergan: consultant fees
- Alfa-Wassermann: travel grants
- AstraZeneca: consultant fees
- **Bayer:** speaker honoraria, consultant fees, travel grants
- **Gilead:** speaker honoraria, consultant fees
- **Ipsen:** consultant fees
- Intercept: speaker honoraria
- **MSD/Eisai:** consultant fees
- Menarini: consultant fees
- Novartis: consultant fees
- Novo Nordisk: consultant fees

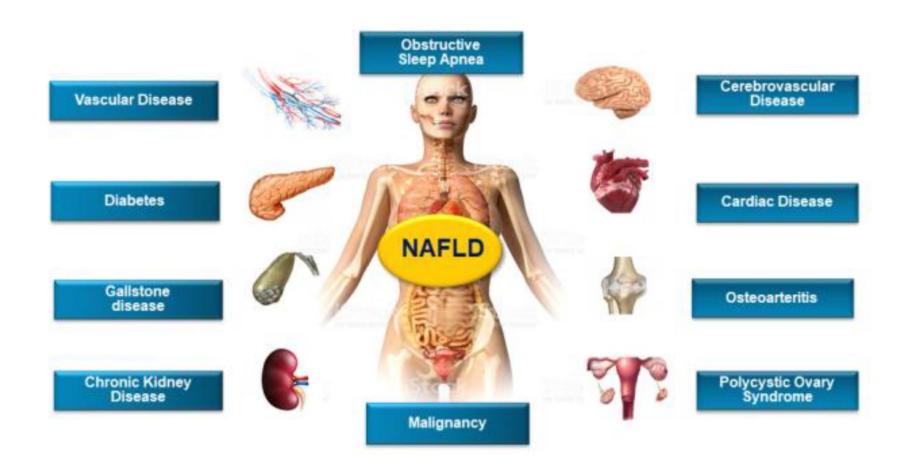
# **Definition and natural history**

# The spectrum of nonalcoholic steatosis





# The hepatic manifestation of the metabolic syndrome




#### Diehl & Day NEJM 2017

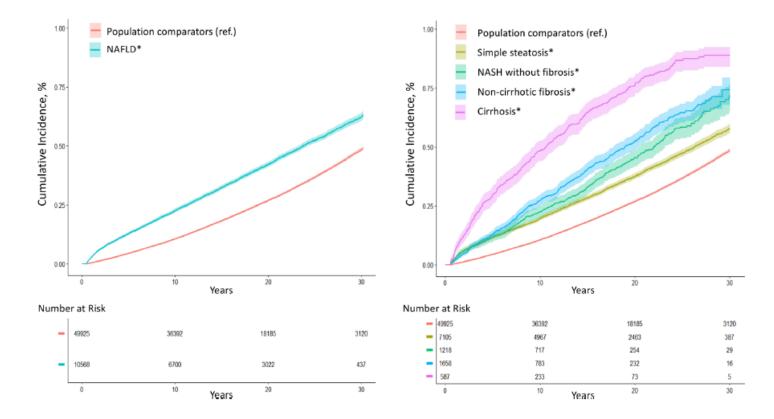
# **Global prevalence of NAFLD**





#### Powell et al., Lancet 2021




#### Younossi et al., Hepatology 2019

# Multiple pathways and interactions between different organs, affect the pathogenesis of NAFLD



#### Powell et al., Lancet 2021

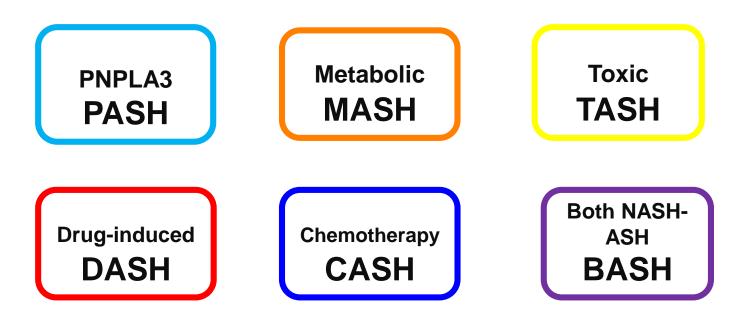
## All-cause mortality according to NASH and histological severity



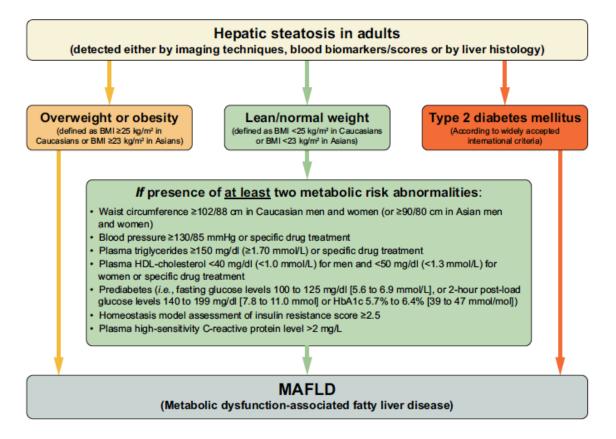
Simon et al., Gut 2020

## Clinical Outcomes in Adults with Nonalcoholic Fatty Liver Disease

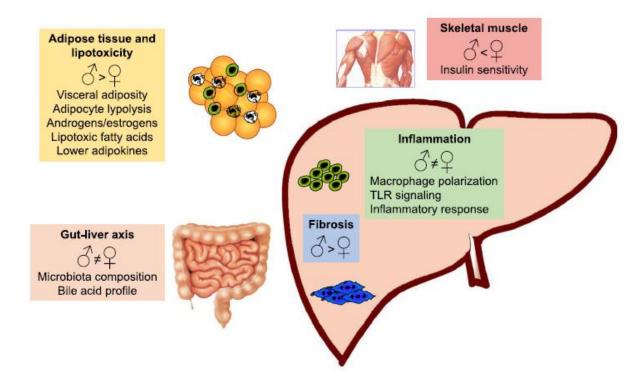
| MULTICENTER, PROSPECTIVE STUDY                                                         |                                                         |                                         |                          |  |  |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|--------------------------|--|--|--|--|
| 1773<br>Adults with<br>nonalcoholic<br>fatty liver disease<br>(median follow-up, 4 yr) | Fibrosis Stage                                          |                                         |                          |  |  |  |  |
|                                                                                        | F0 to F2<br>No, mild, or<br>moderate fibrosis<br>N=1237 | <b>F3</b><br>Bridging fibrosis<br>N=369 | F4<br>Cirrhosis<br>N=167 |  |  |  |  |
| Liver-related events                                                                   |                                                         | rate per 100 person-yr                  |                          |  |  |  |  |
| Variceal bleeding                                                                      | 0.00                                                    | 0.06                                    | 0.70                     |  |  |  |  |
| Ascites                                                                                | 0.04                                                    | 0.52                                    | 1.20                     |  |  |  |  |
| Encephalopathy                                                                         | 0.02                                                    | 0.75                                    | 2.39                     |  |  |  |  |
| Hepatocellular carcinoma                                                               | 0.04                                                    | 0.34                                    | 0.14                     |  |  |  |  |
| Death from any cause                                                                   | 0.32                                                    | 0.89                                    | 1.76                     |  |  |  |  |


Increasing fibrosis stage is associated with increased risks of liver-related complications and death.

Sanyal et al., N Engl J Med 2021


# **Diagnostic strategies and referral**

# Steatohepatitis as a phenotype determined by different types of injury



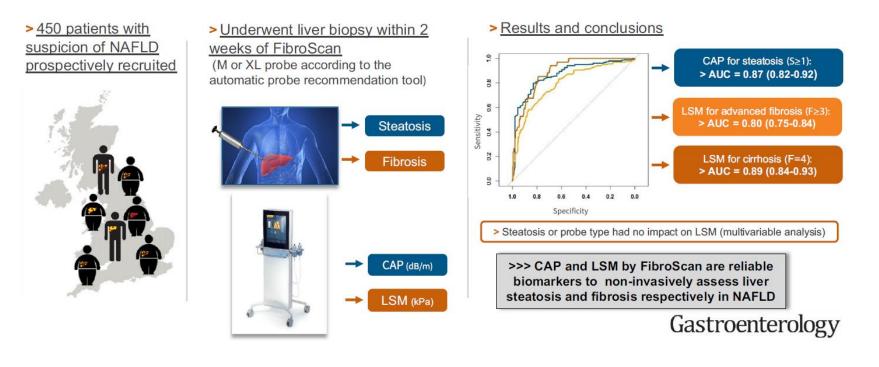



### 'Positive' diagnostic criteria for MAFLD



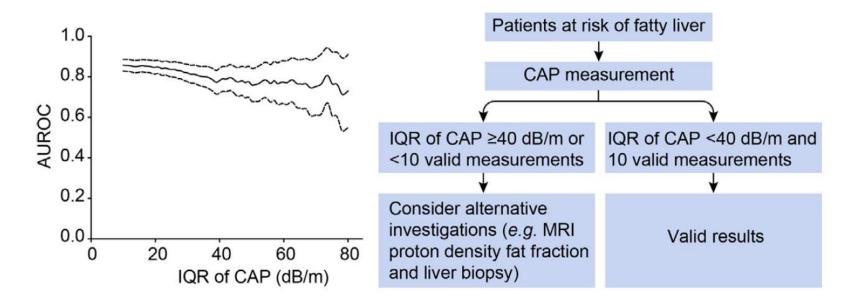
### Sexual dimorphism in NAFLD




Burra et al., Liver Int 2021

### Serum biomarkers

### Elastography techniques




# Accuracy of CAP and stiffness measurement in in patients with Nonalcoholic Fatty Liver Disease

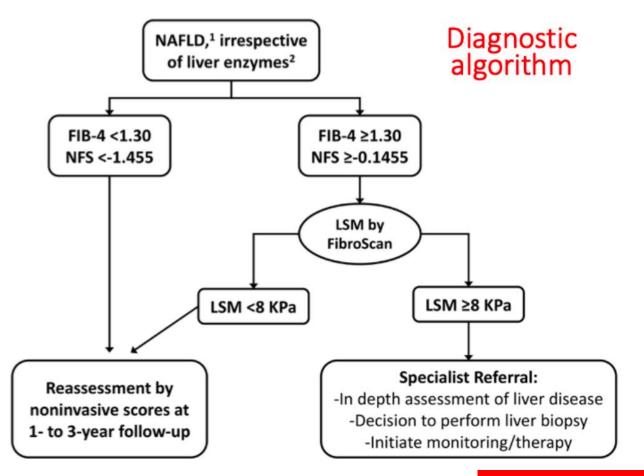


# Validity criteria for the diagnosis of fatty liver by controlled attenuation parameter

The interquartile range (IQR) reflects the variability of controlled attenuation parameter (CAP) measurement. A wide IQR was associated with a decline in the accuracy of CAP for the detection of fatty liver.



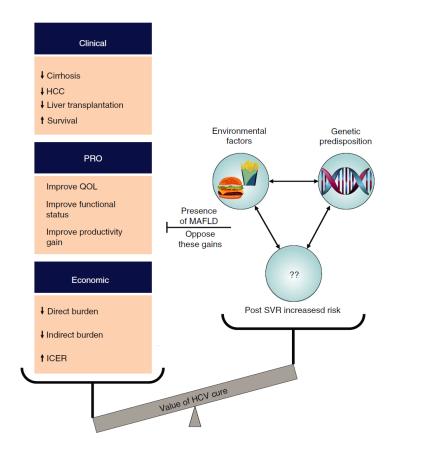
Revised: 29 November 2019


DOI: 10.1111/liv.14325

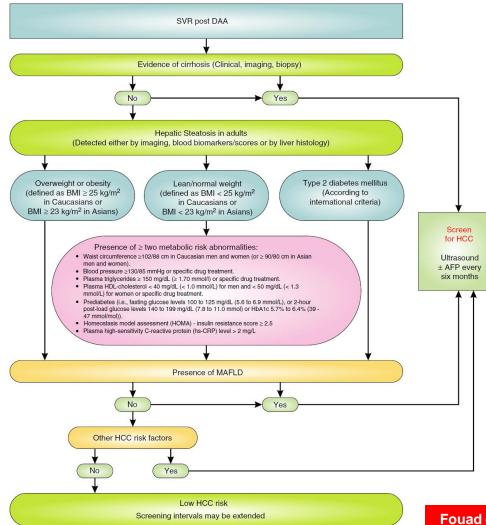
ORIGINAL ARTICLE



# Controlled attenuation parameter reflects steatosis in compensated advanced chronic liver disease

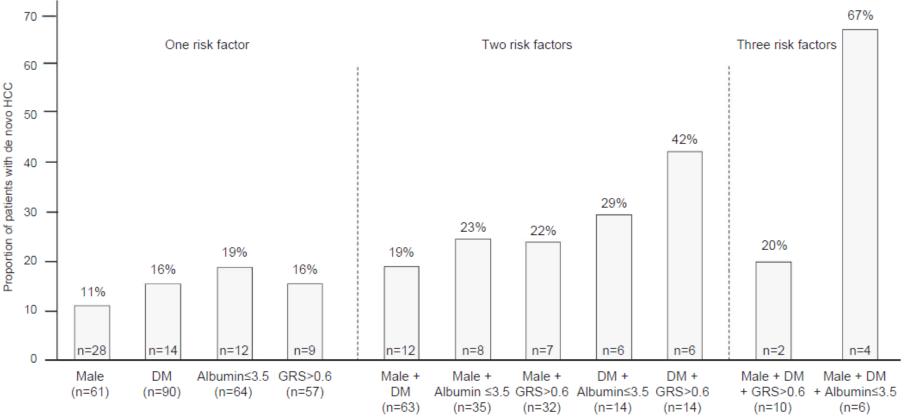

Rosangela Piccinni<sup>1</sup> | Susana G. Rodrigues<sup>1</sup> | Matteo Montani<sup>2</sup> | Giuseppe Murgia<sup>1</sup> | Maria G. Delgado<sup>1</sup> | Stefania Casu<sup>1</sup> | Guido Stirnimann<sup>1</sup> | Nasser Semmo<sup>1</sup> | Andrea De Gottardi<sup>1</sup> | Jean-François Dufour<sup>1</sup> | Annalisa Berzigotti<sup>1</sup>




#### Italian NAFLD Guidelines, 2021

### **NAFLD** and HCV

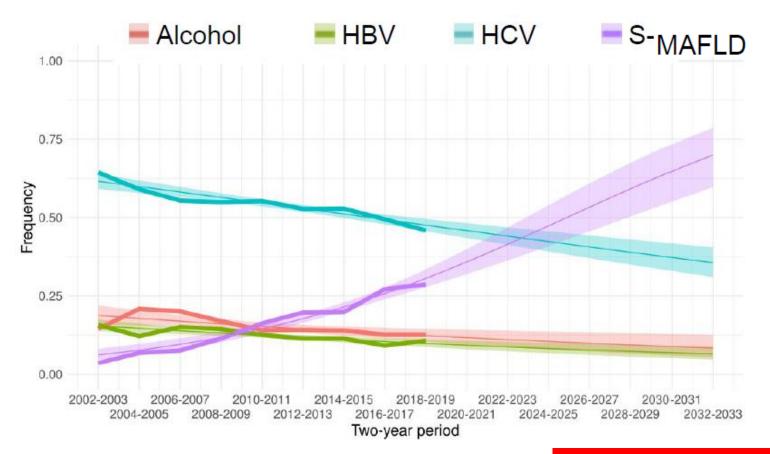
## **Negative impact of MAFLD in the SVR population**



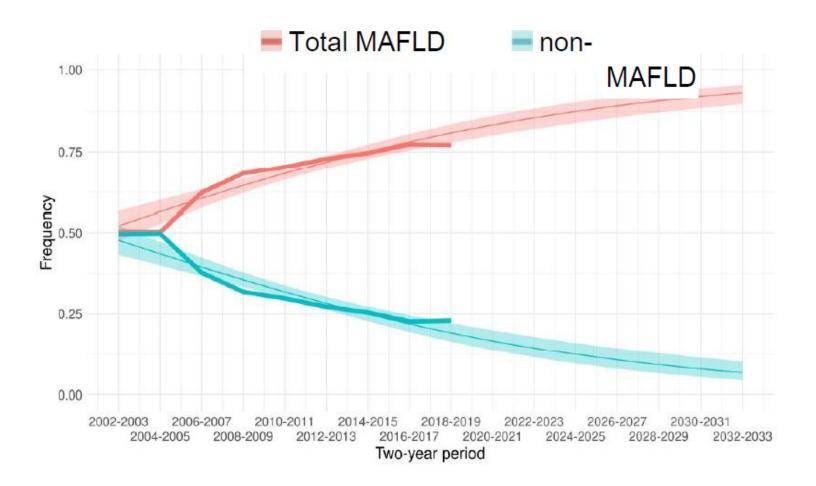

- MAFLD should be incorporated to the glossary of liver diseases either as a specific liver disease or as comorbid or superimposed disease (with viral hepatitis, hemochromatosis and PBC among others).
- Patients cured of CHC with MAFLD need monitoring given their risks of adverse outcomes, including increased risk for new diagnosis of cirrhosis, development of liver-related complications and HCC as well as extrahepaticrelated complications
- The simplicity of the diagnostic criteria of MAFLD will help raise clinical awareness and should facilitate the monitoring process. However, the exact monitoring parameters remain undefined



#### Fouad et al., Aliment Pharm Ther 2021


# Proportion of patients with de novo HCC according to a combination of independent risk factors




#### Degasperi et al., Hepatology 2020

### **NAFLD and HCC**

## **Trends in HCC etiology**



Svegliati Baroni, Vitale et al., Gut 2022



Svegliati Baroni, Vitale et al., Gut 2022

# AGA clinical practice update on screening and surveillance for HCC in patients with NAFLD

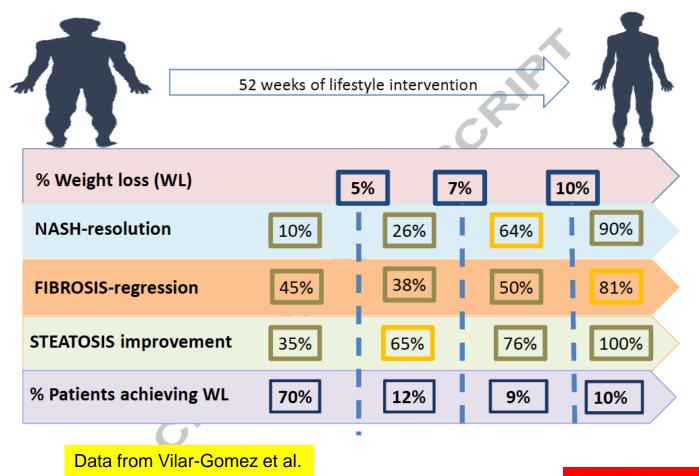
Best Practice Advice 1: Screening for Hepatocellular Carcinoma Should Be Considered in All Patients With Cirrhosis Due to Nonalcoholic Fatty Liver Disease

Best Practice Advice 2: Patients With Nonalcoholic Fatty Liver Disease With Noninvasive Markers Showing Evidence of Advanced Liver Fibrosis or Cirrhosis Should Be Considered for Hepatocellular Carcinoma Screening

Best Practice Advice 3: Patients With Nonalcoholic Fatty Liver Disease in the Absence of Advanced Liver Fibrosis Should Not Be Routinely Considered for Hepatocellular Carcinoma Screening Best Practice Advice 4: Adequacy of Ultrasound in Assessing the Liver Parenchyma for Mass Lesions Should Be Documented When Used for Hepatocellular Carcinoma Screening in Patients With Cirrhosis Due to Nonalcoholic Fatty Liver Disease

Best Practice Advice 5: When the Quality of Ultrasonography Is Suboptimal for Screening of Hepatocellular Carcinoma (eg, Due to Obesity) Future Screening Should Be Performed by Either Computed Tomography or Magnetic Resonance Imaging Scan, With or Without  $\alpha$ -Fetoprotein, Every 6 Months

#### NASH and


Immilinotheran

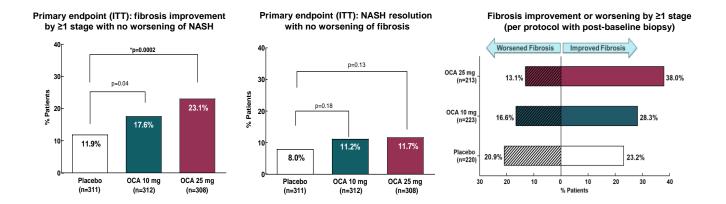
#### Article

# NASH limits anti-tumour surveillance in immunotherapy-treated HCC

Dominik Pfister<sup>1,82</sup>, Nicolás Gonzalo Núñez<sup>2</sup>, Roser Pinvol<sup>3</sup>, Olivier Govaere<sup>4</sup>, Matthias Pinter<sup>5,6</sup>, Marta Szydlowska<sup>1</sup>, Revant Gupta<sup>7,8</sup>, Mengjie Qiu<sup>9</sup>, Aleksandra Deczkowska<sup>10</sup>, Assaf Weiner<sup>10</sup>, Florian Müller<sup>1</sup>, Ankit Sinha<sup>11,12</sup>, Ekaterina Friebel<sup>2</sup>, Thomas Engleitner<sup>13,14,15</sup>, Daniela Lenggenhager<sup>16</sup>, Anja Moncsek<sup>17</sup>, Danijela Heide<sup>1</sup>, Kristin Stirm<sup>1</sup>, Jan Kosla<sup>1</sup>, Eleni Kotsiliti<sup>1</sup>, Valentina Leone<sup>1,18</sup>, Michael Dudek<sup>19</sup>, Suhail Yousuf<sup>9</sup>, Donato Inverso<sup>20,21</sup>, Indrabahadur Singh<sup>1,22</sup>, Ana Teijeiro<sup>23</sup>, Florian Castet<sup>3</sup>, Carla Montironi<sup>3</sup>, Philipp K, Haber<sup>24</sup>, Dina Tiniakos<sup>4,25</sup>, Pierre Bedossa<sup>4</sup>, Simon Cockell<sup>26</sup>, Ramy Younes<sup>4,27</sup>, Michele Vacca<sup>28</sup>, Fabio Marra<sup>29</sup>, Jörn M. Schattenberg<sup>30</sup>, Michael Allison<sup>31</sup>, Elisabetta Bugianesi<sup>27</sup>, Vlad Ratziu<sup>32</sup>, Tiziana Pressiani<sup>33</sup>, Antonio D'Alessio<sup>33</sup>, Nicola Personeni<sup>33,34</sup>, Lorenza Rimassa<sup>33,34</sup>, Ann K. Daly<sup>4</sup>, Bernhard Scheiner<sup>5,6</sup>, Katharina Pomei<sup>5,6</sup>, Martha M, Kirstein<sup>35,36</sup>, Arndt Vogel<sup>35</sup>, Markus Peck-Radosavlievic<sup>37</sup>, Florian Hucke<sup>37</sup>, Fabian Finkelmeier<sup>38</sup>, Oliver Waidmann<sup>38</sup>, Jörg Trojan<sup>38</sup>, Kornelius Schulze<sup>39</sup>, Henning Wege<sup>39</sup>, Sandra Koch<sup>40</sup>, Arndt Weinmann<sup>40</sup>, Marco Bueter<sup>41</sup>, Fabian Rössler<sup>41</sup>, Alexander Siebenhüner<sup>42</sup>, Sara De Dosso<sup>43</sup>, Jan-Philipp Mallm<sup>44</sup>, Viktor Umansky<sup>45,46</sup>, Manfred Jugold<sup>47</sup>, Tom Luedde<sup>48</sup>, Andrea Schietinger<sup>49,50</sup>, Peter Schirmacher<sup>51</sup>, Brinda Emu<sup>1</sup>, Hellmut G, Augustin<sup>20,21</sup>, Adrian Billeter<sup>52</sup>, Beat Müller-Stich<sup>52</sup>, Hiroto Kikuchi<sup>53</sup>, Dan G. Duda<sup>53</sup>, Fabian Kütting<sup>54</sup>, Dirk-Thomas Waldschmidt<sup>54</sup>, Matthias Philip Ebert<sup>55</sup>, Nuh Rahbari<sup>56</sup>, Henrik E. Mei<sup>57</sup>, Axel Ronald Schulz<sup>57</sup>, Marc Ringelhan<sup>58,59,60</sup>, Nisar Malek<sup>61</sup>, Stephan Spahn<sup>61</sup>, Michael Bitzer<sup>61</sup>, Marina Ruiz de Galarreta<sup>24,62</sup>, Amaia Lujambio<sup>24,62,63</sup>, Jean-Francois Dufour<sup>64,65</sup>, Thomas U. Marron<sup>24,66</sup>, Ahmed Kaseb<sup>67</sup>, Masatoshi Kudo<sup>68</sup>, Yi-Hsiang Huang<sup>69,70</sup>, Nabil Djouder<sup>23</sup>, Katharina Wolter<sup>71,72</sup>, Lars Zender<sup>71,72,73</sup>, Parice N. Marche<sup>74,75</sup>, Thomas Decaens<sup>74,75,76</sup>, David J. Pinato<sup>77,78</sup>, Roland Rad<sup>13,14,15</sup>, Joachim C. Mertens<sup>17</sup>, Achim Weber<sup>16,79</sup>, Kristian Unger<sup>18</sup>, Felix Meissner<sup>11</sup>, Susanne Roth<sup>9</sup>, Zuzana Macek Jilkova<sup>74,75,77</sup>, Manfred Claassen<sup>7,8</sup>, Quentin M, Anstee<sup>4,80</sup>, Ido Amit<sup>10</sup>, Percy Knolle<sup>19</sup>, Burkhard Becher<sup>2</sup>, Josep M. Llovet<sup>3,24,81</sup> & Mathias Heikenwalder<sup>1</sup>

# **Current situation in NASH treatment**

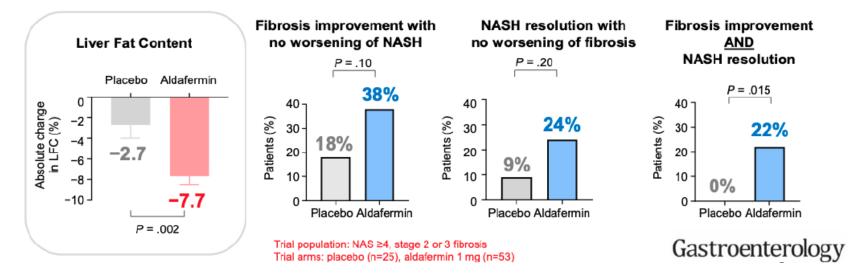



Gastroenterology 2020;∎:1–7

# AGA Clinical Practice Update on Lifestyle Modification Using Diet and Exercise to Achieve Weight Loss in the Management of Nonalcoholic Fatty Liver Disease: Expert Review

Zobair M. Younossi,<sup>1,2,\*</sup> Kathleen E. Corey,<sup>3,\*</sup> and Joseph K. Lim<sup>4</sup>

<sup>1</sup>Center for Liver Diseases and Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia; <sup>2</sup>Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia; <sup>3</sup>Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and <sup>4</sup>Yale Liver Center and Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut


# **REGENERATE:** a Phase 3 trial of obeticholic acid (OCA) for NASH

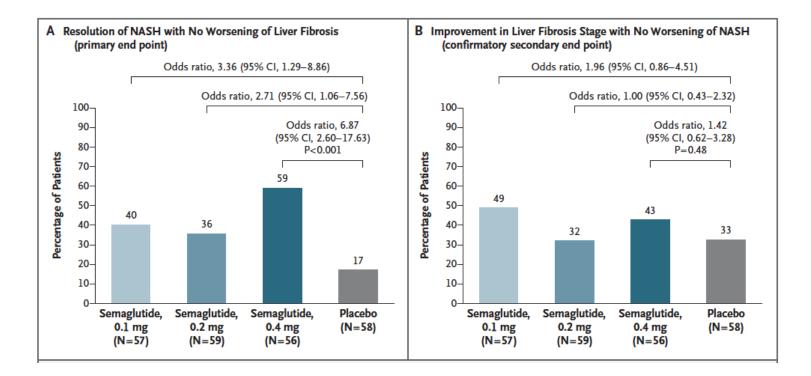


- OCA 25 mg QD met the primary endpoint of improvement in liver fibrosis with no worsening of NASH
- Although the additional primary endpoint of NASH resolution with no worsening of fibrosis was not met, resolution of NASH based on the overall pathologist's assessment was more frequent with OCA 25 mg

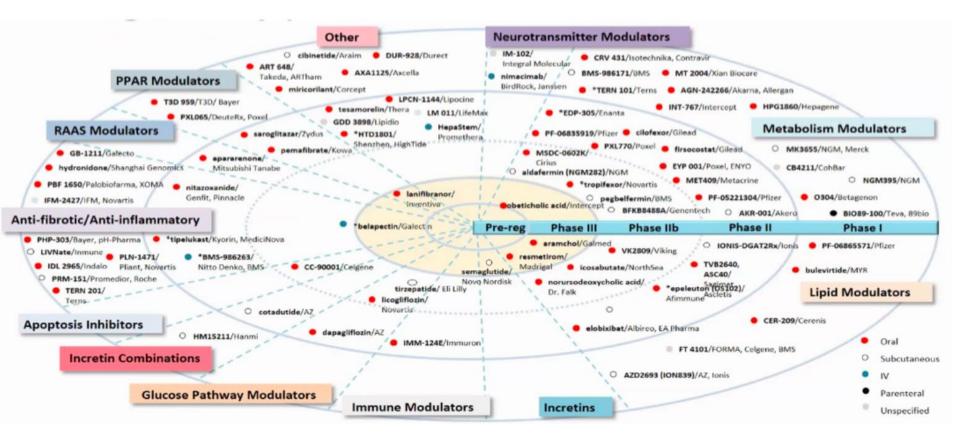
## Aldafermin, a FGF-19 analog, in patients with NASH

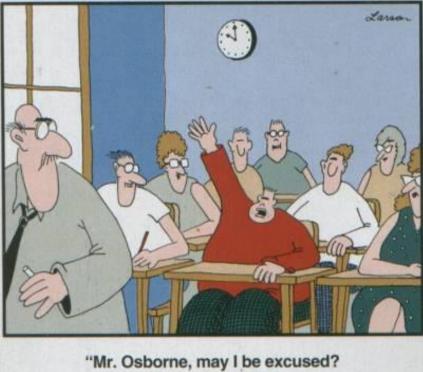
24- week, phase 2 study, in 78 patients with biopsy-proven NASH. Key inclusion criteria were NAS score  $\geq$ 4, stage 2 or 3 fibrosis, and absolute liver fat content  $\geq$ 8%, measured by MRI-PDFF. Patients were randomly assigned to s.c PL or aldafermin 1 mg daily for 24 weeks. The primary outcome was change in liver fat content by week 24. Secondary outcomes were serum markers, fibrosis improvement and NASH resolution.




## The pan-PPAR agonist lanifibranor in NASH

Phase 2b, double-blind, RCT in 247 patients with noncirrhotic, highly active NASH assigned to 1200 or 800 mg of lanifibranor or PL once daily for 24 weeks. 103 (42%) had T2D and 188 (76%) had significant or advanced fibrosis.


| End Point                                                                                       | Placebo         | Lanifibranor       | Risk Ratio (95% CI)         | P Value                  |                                              |  |
|-------------------------------------------------------------------------------------------------|-----------------|--------------------|-----------------------------|--------------------------|----------------------------------------------|--|
|                                                                                                 | percent of pati | ents with response |                             |                          |                                              |  |
| Primary end point: reduction of ≥2 points<br>in SAF·A score and no worsening<br>of fibrosis     |                 |                    |                             |                          | Primary end point:<br>decrease of at least 2 |  |
| Lanifibranor, 800 mg                                                                            | 33              | 48                 |                             | 1.45 (1.00-2.10) 0.07    | points in the SAF-A                          |  |
| Lanifibranor, 1200 mg                                                                           | 33              | 55                 | ┝━━━┥                       | 1.69 (1.22-2.34) 0.007   |                                              |  |
| Secondary end point: resolution of NASH<br>without worsening of fibrosis                        |                 |                    |                             |                          | score (ballooning and                        |  |
| Lanifibranor, 800 mg                                                                            | 22              | 39                 | <b>├───</b> ⊖───┤           | 1.70 (1.07-2.71)         | inflammation) without                        |  |
| Lanifibranor, 1200 mg                                                                           | 22              | 49                 | <b>⊢−−</b> −−1              | 2.20 (1.49-3.26)         | ,                                            |  |
| Secondary end point: improvement in fibrosis<br>stage of ≥1 without worsening of NASH           |                 |                    |                             |                          | worsening of fibrosis                        |  |
| Lanifibranor, 800 mg                                                                            | 29              | 34                 | <b>├</b>                    | 1.15 (0.72-1.85)         | Secondary end points:                        |  |
| Lanifibranor, 1200 mg                                                                           | 29              | 48                 | <b>⊢−−</b> − <b>1</b>       | 1.68 (1.15-2.46)         | surrogate biomarkers,                        |  |
| Composite secondary end point: resolution<br>of NASH and improvement in fibrosis<br>stage of ≥1 |                 |                    |                             |                          | resolution of NASH                           |  |
| Lanifibranor, 800 mg                                                                            | 9               | 25                 | <b>→</b>                    | 2.57 (1.20-5.51)         | and regression of                            |  |
| Lanifibranor, 1200 mg                                                                           | 9               | 35                 | 0.8 1.0 2.0 3.0 4.0 6.0 8.0 | 3.95 (2.03-7.66)<br>10.0 | fibrosis.                                    |  |
|                                                                                                 |                 | Placebo E          | Better Lanifibranor Better  | -                        |                                              |  |


Francque et al., N Engl J Med 2021

## The GLP-1 agonist semaglutide induces NASH resolution but does not improve fibrosis



#### Newsome et al., NEJM 2020





# **THANK YOU!**

My brain is full."